359 research outputs found

    Bloch oscillations in one-dimensional spinor gas

    Full text link
    A force applied to a spin-flipped particle in a one-dimensional spinor gas may lead to Bloch oscillations of particle's position and velocity. The existence of Bloch oscillations crucially depends on the viscous friction force exerted by the rest of the gas on the spin excitation. We evaluate the friction in terms of the quantum fluid parameters. In particular, we show that the friction is absent for integrable cases, such as SU(2) symmetric gas of bosons or fermions. For small deviations from the exact integrability the friction is very weak, opening the possibility to observe Bloch oscillations.Comment: 4 pages, 2 figure

    Cumulative identical spin rotation effects in collisionless trapped atomic gases

    Full text link
    We discuss the strong spin segregation in a dilute trapped Fermi gas recently observed by Du et al. with "anomalous" large time scale and amplitude. In a collisionless regime, the atoms oscillate rapidly in the trap and average the inhomogeneous external field in an energy dependent way, which controls their transverse spin precession frequency. During interactions between atoms with different spin directions, the identical spin rotation effect (ISRE) transfers atoms to the up or down spin state, depending on their motional energy. Since low energy atoms are closer to the center of the trap than high energy atoms, the final outcome is a strong correlation between spins and positions.Comment: 4 pages, 2 figures; v2: comparison to experimental data adde

    Optical excitation of nonlinear spin waves

    Full text link
    We demonstrate a technique for exciting spin waves in an ultracold gas of Rb-87 atoms based on tunable AC Stark potentials. This technique allows us to excite normal modes of spin waves with arbitrary amplitudes in the trapped gas, including dipole, quadrupole, octupole, and hexadecapole modes. These modes exhibit strong nonlinearities, which manifest as amplitude dependence of the excitation frequencies and departure from sinusoidal behavior. Our results are in good agreement with a full treatment of a quantum Boltzmann transport equation.Comment: 11 pages, 5 figure

    Dynamics of a one-dimensional spinor Bose liquid: a phenomenological approach

    Full text link
    The ground state of a spinor Bose liquid is ferromagnetic, while the softest excitation above the ground state is the magnon mode. The dispersion relation of the magnon in a one-dimensional liquid is periodic in the wavenumber q with the period 2\pi n, determined by the density n of the liquid. Dynamic correlation functions, such as e.g. spin-spin correlation function, exhibit power-law singularities at the magnon spectrum, ωωm(q,n)\omega\to\omega_m(q,n). Without using any specific model of the inter-particle interactions, we relate the corresponding exponents to independently measurable quantities ωm/q\partial\omega_m/\partial q and ωm/n\partial\omega_m/\partial n.Comment: 4 pages

    Internal state conversion in ultracold gases

    Full text link
    We consider an ultracold gas of (non-condensed) bosons or fermions with two internal states, and study the effect of a gradient of the transition frequency between these states. When a π/2\pi/2 RF pulse is applied to the sample, exchange effects during collisions transfer the atoms into internal states which depend on the direction of their velocity. This results, after a short time, in a spatial separation between the two states. A kinetic equation is solved analytically and numerically; the results agree well with the recent observations of Lewandowski et al.Comment: Accepted version, to appear in PR

    Spin self-rephasing and very long coherence times in a trapped atomic ensemble

    Full text link
    We perform Ramsey spectroscopy on the ground state of ultra-cold 87Rb atoms magnetically trapped on a chip in the Knudsen regime. Field inhomogeneities over the sample should limit the 1/e contrast decay time to about 3 s, while decay times of 58 s are actually observed. We explain this surprising result by a spin self-rephasing mechanism induced by the identical spin rotation effect originating from particle indistinguishability. We propose a theory of this synchronization mechanism and obtain good agreement with the experimental observations. The effect is general and susceptible to appear in other physical systems.Comment: Revised version; improved description of the theoretical treatmen

    Optical excitations in a non-ideal Bose gas

    Full text link
    Optical excitations in a Bose gas are demonstrated to be very sensitive to many-body effects. At low temperature the momentum relaxation is provided by momentum exchange collisions, rather than by elastic collisions. A collective excitation mode forms, which in a Boltzmann gas is manifest in a collision shift and dramatic narrowing of spectral lines. In the BEC state, each spectral line splits into two components. The doubling of the optical excitations results from the physics analogous to that of the second sound. We present a theory of the line doubling, and calculate the oscillator strengths and linewidth.Comment: 5 pages, 3 eps figure

    Electric field induced strong localization of electrons on solid hydrogen surface: possible applications to quantum computing

    Full text link
    Two-dimensional electron system on the liquid helium surface is one of the leading candidates for constructing large analog quantum computers (P.M. Platzman and M.I. Dykman, Science 284, 1967 (1999)). Similar electron systems on the surfaces of solid hydrogen or solid neon may have some important advantages with respect to electrons on liquid helium in quantum computing applications, such as larger state separation ΔE\Delta E, absence of propagating capillary waves (or ripplons), smaller vapor pressure, etc. As a result, it may operate at higher temperatures. Surface roughness is the main hurdle to overcome in building a realistic quantum computer using these states. Electric field induced strong localization of surface electrons is shown to be a convenient tool to characterize surface roughness.Comment: 4 pages, 3 figure

    Normal-superfluid interaction dynamics in a spinor Bose gas

    Get PDF
    Coherent behavior of spinor Bose-Einstein condensates is studied in the presence of a significant uncondensed (normal) component. Normal-superfluid exchange scattering leads to a near-perfect local alignment between the spin fields of the two components. Through this spin locking, spin-domain formation in the condensate is vastly accelerated as the spin populations in the condensate are entrained by large-amplitude spin waves in the normal component. We present data evincing the normal-superfluid spin dynamics in this regime of complicated interdependent behavior.Comment: 5 pages, 4 fig

    Search for Li4

    Get PDF
    The possibility that Li4 might be stable against decay into He3 and a proton has led to revived speculation(1) concerning the effect which such a nucleus would have in stellar processes. Although there are good theoretical and some experimental arguments(1,2) against the existence of a β-active Li4, it seemed important to make a direct, experimental investigation of this nucleus
    corecore